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1 Introduction

The theory of fibre bundles is beautiful mathematics but also plays a prominent role in
contemporary theoretical physics. Most of the fundamental physical theories, including
the subtheories of the standard model and general relativity, are gauge field theories and
the theory of fibre bundles provide a natural mathematical framework for these theories.
The fundamental laws appear as differential forms defined on a vector bundle and the
solutions to the equations are sections of the same vector bundle. There are a variety of
interesting philosophical questions associated with gauge field theories, such as: Why do
so many physical theories have gauge freedom? What is the role of symmetry in physics?
What is the ontological status of gauge fields? The simplicity, generality and unifying
character of the fibre bundle formalism should facilitate inquiry into these questions.

This paper is not concerned with examining these very difficult questions, but rather
to examine some related philosophical issues from the point of view of the fibre bundle
formalism and its relevance to the philosophy of physics and mathematics. Following
an exposition of the formalism, I will examine the role that fibre bundles can play in
framing questions regarding the ontology of gauge potentials and how ontological issues
together with them lead to a consideration of general relativity as a gauge theory, as
well as their general unifying character in both physics and mathematics.

2 The Fibre Bundle Formalism for Gauge Field Theory

2.1 Lie Groups and Lie Algebras

Since gauge theories all involve invariance under some kind of symmetry operation,
gauge theory naturally involves group theory in a fundamental way. The groups that
are important for gauge theories also have the structure of a manifold and so the notions
of a Lie group and a Lie algebra are fundamentally important in gauge field theories.
This section is devoted to a summary of some of the pertinent aspects of Lie group
theory.
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A real Lie group GL is a group that is also a manifold such that the mapping from
any element to its inverse and the mapping from any two elements to their product
are smooth maps. This last condition is equivalent to the condition that the mapping
(g1, g2)  g1g

−1
2 is C∞. As a result of the smoothness of the group opertations, two

classes of maps, the right and left translations of GL, become important.1 The most
common examples of Lie groups, and ones that are particularly important in theoretical
physics, are subgroups of the general linear groups GL(n,R) and GL(n,C) of inverible
n × n matricies (with elements in R and C respectively). The general linear groups
themselves and many of their subgroups, such as the special linear group SL(n) (with
elements in either R or C), the orthogonal group O(n), the special orthogonal group
SO(n), the unitary group U(n), and the special unitary group SU(n), are Lie groups.

Just as in the theory of groups, the concept of a homomorphism is important in Lie
group theory. A homomorphism of Lie groups is a homomorphism of groups ρ: G −→ G′

that is also a smooth map between the underlying manifolds of the two Lie groups. Using
this definition it is possible to ‘represent’ Lie group elements by linear transformations
on some vector space V . Such a mapping is called a Lie group representation, which is a
group representation where the homomorhpism ρ is a homomorphism of Lie groups, viz.
ρ: G −→ GL(V ), where GL(V ) denotes the general linear group of V , is a Lie group
homomorphism. It turns out that the map G × V −→ V defined by (g, v)  ρ(g)v,
where g ∈ G and v ∈ V , is a group action because the map satisfies the requisite axiom
(gg′, v) = (g, (g′, v)) for any g, g′ ∈ G and v ∈ V .2

Lie groups are complicated objects and can be rather difficult to study directly, con-
sequently the Lie Algebra corresponding to a Lie group becomes important because it
is closely related to the Lie group but easier to study. Much of this relative ease derives
from the fact that the Lie Algebra has an underlying vector space structure. If G is
a Lie group, then the Lie algebra of G, denoted g, is the tangent space of the identity
element of G, TeG. The Lie algebra of a Lie group G encodes most of the structure
of the entire Lie group G, including the group structure and many of the topological
properties of G.

Since a Lie group G is a manifold, we can consider vector fields on G. The vector
fields of interest in connection to Lie algebras are left-invariant and right-invariant vector
fields; we will focus on the former of the two. A vector field X on a Lie group G is left-
invariant if it is lg-related to itself for all g ∈ G, i.e.

lg∗X = X for all g ∈ G, (1)
1See Appendix B for definitions.
2This simply follows from the fact that ρ is a homomorphism and associativity.
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where lg∗ is the pushing forward of lg, the left translation map defined by (17) in
Appendix B. The set of all left-invariant vector fields on a Lie group G is denoted L(G)
and is a real vector space. It is easy to show that for any two left-invariant vector
fields X1 and X2, their commutator or Lie bracket [X1, X2] ≡ X1X2 −X2X1 is also a
left-invariant vector field. This fact turns L(G) into an algebra, which, astonishingly, is
isomorphic to g. Accordingly, we may also consider L(G) to be the Lie algebra of G.
This isomorphism allows the definition of a Lie bracket on the Lie algebra. If we let the
left-invariant vector field LA be the image of A ∈ TeG under the isomorphism and if we
let A,A′ ∈ TeG then the Lie bracket [A,A′] ∈ TeG is defined to be the unique element
in TeG such that

L[A,A′] = [LA, LA′ ], (2)

which is satisifed by
[A,A′] ≡ [LA, LA′ ]e. (3)

This turns TeG explicitly into an algebra. With the Lie Bracket defined it is possible to
define a homomorphism of Lie algebras as a linear map ρ: g −→ h such that ρ([A,A′]) =
[ρ(A), ρ(A′)] for all A,A′ ∈ g.

An important property of Lie Algebras is that if {E1, E2, . . . , En}, where n = dim(G),
is a basis set for L(G) ∼= TeG, then the commutator of any of these fields must be a
linear combination of them. This enables us to write

[Eα, Eβ] = Cαβ
γEγ ,

3 (4)

for some Cαβ
γ ∈ R. The numbers Cαβ

γ are called the structure constants of the Lie
group or Lie algebra because they characterize the structure of the Lie group.

2.2 Fibre Bundles

A natural mathematical framework for gauge field theories is that of the fibre bundle
formalism. It effects a clear separation of the kinematics, supplied by the structure
of the base manifold, which usually represents a physical space or spacetime,4 and
the dynamics, supplied by the specification of a Lagrangian. In the case of Yang-Mills
theories, for instance, the group of symmetries of the Lagrangian, the internal symmetry,
is made local by constructing a fibre bundle with the fibre being the symmetry group.
This, then, enables sections, a connection and curvature to be defined on the bundle
which represent physical fields on the base manifold, or physical spacetime. Although

3Where γ ranges from 1 to n and we are using the Einstein summation convention.
4The ‘physical space or spacetime’ must come with a metric, even though this additional structure

is not necessesary for the definition of a bundle, because this metric is necessary for a meaningful
kinematics.
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general relativity cannot be formulated as a Yang-Mills theory, it can also be formulated
using fibre bundles, making the theory of fibre bundles a uniform framework to treat all
the fundamental fields in modern physics.

A bundle is defined to be a structure (E, π,M) consisting of a smooth manifold E, a
smooth manifold M and an onto smooth map π: E −→ M .5 The manifold E is called
the total space or bundle space, the manifold M is called the base space, and π is called
the projection map. It is common to refer to the bundle as E, when it is clear what the
base space and projection map are. For each point p ∈M , the inverse image of p under
π

Ep = {q ∈ E : π(q) = p}

is called the fibre over p. Thus, we have that

E =
⋃

p∈M

Ep.

If for each p ∈ M Ep is homeomorphic to a common space F , then F is known as the
fibre of the bundle and the bundle is called a fibre bundle. An important example of a
fibre bundle is the tangent bundle TM formed from the set of all tangent spaces TpM
of M :

TM =
⋃

p∈M

TpM,

where the projection map π: TM −→M is the map from each tangent vector vp ∈ TpM
to the point p ∈M and the fibre of the bundle is Rn.

The equivalent of a homomorphism in the case of bundles is a bundle morphism,
which, given two bundles (E, π,M) and (E′, π′,M ′), is a map ψ: E −→ E′ together
with a map φ: M −→M ′ such that ψ maps each fibre Ep into the fibre E′

φ(p). It turns
out that the map ψ completely determines the morphism. A bundle morphism is an
isomorphism if both φ and ψ are diffeomorphisms. One can construct a smaller version
of a bundle, called the resriction of a bundle (E, π,M) to a submanifold S ⊆ M , from
total space E|S = {q ∈ E|π(q) ∈ S}, base space S and projection map π|S .

In general, fibre bundles are extrordinarily complex objects. There are, however,
simple cases called trivial bundles. Such bundles (E, π,M) have the property that they
are isomorphic to a product bundle (M × F, pr,M) for some space F . A more complex,

5The resriction that E, M and π be smooth technically makes the bundle in question a C∞-bundle.
For E and M topological manifolds and π continuous, (E, π, M) would be a bundle. But since we are
will always have the former restrictions the will be no confusion caused by calling C∞-bundles ‘bundles.’
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but more interesting case is that of a locally trivial bundle. A bundle is called locally
trivial with standard fibre F if for each point p ∈ M , there is a neighborhood U of p
and a bundle isomorphism ψ: E|U −→ U ×F . The bundles of interest in gauge theories
are locally trivial.

As mentioned above, the first kind of ‘field’ that can be defined on a bundle is a
section. A section of a bundle (E, π,M) is a map s: M −→ E such that the image of
each point p ∈M lies in the fibre Ep over p. Another way of saying this is that π◦s = ιM .
Sections have especially nice properties when they are defined on a particular kind of
bundle called a vector bundle.6 The entire space of sections Γ(E) on a vector bundle
also has some nice properties. Two of the most important properties of Γ(E) are that
it is a module over C∞(M) and that for any trivial bundle it has a basis ei so that any
s ∈ Γ(E) can be written uniquely as the sum

s = siei.

This latter property is especially useful in the case of locally trivial vector bundles since
it enables one to work with a basis of sections over some neighborhood of a point in the
base space. That sections are so important for gauge field theories becomes particularly
evident when it is seen that every section of a vector bundle is actually a vector field.
This connection can be pushed further by creating various vector bundle constructions.

Many of the same objects, such as duals, direct sums and tensor products, that can
be constructed from vector spaces can be constructed from a vector bundle. Given a
vector bundle E one can construct the dual bundle

E∗ =
⋃

p∈M

E∗
p ,

where E∗
p is the dual space of Ep. Given a basis of sections ei there is a unique dual basis

ei of sections of E∗. In beautiful similarity to the case of sections of a vector bundle,
every section of a dual bundle is a 1-form. A natural example of this is the dual bundle
of the tangent space TM , which is a vector bundle, called the cotangent bundle

T ∗M ≡
⋃

p∈M

T ∗pM.

6See definition in Appendix C.
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Similarly, given two vector bundles (E, π,M) and (E′, π′,M) it is possible to construct
the direct sum vector bundle E⊕E′ over M , where the fibre over p ∈M is Ep⊕E′

p, and
the tensor product vector bundle E⊗E′ over M , where the fibre over p ∈M is Ep⊗E′

p.
Given a vector bundle E one can also define an exterior algebra bundle ΛE where the
fibre over p ∈ M is ΛEp. The sections of the exterior algebra bundle form an algebra
when fitted with a wedge product. Such a construction on the cotangent bundle T ∗M
generates an object ΛT ∗M called the form bundle. The differential forms on M are just
the sections of the form bundle. Thus we are now able to see that fibre bundles provide
a cohesive framework for the treatment of differential forms, which makes it ideal for
use in physics since physical laws can be written as differential forms on a manifold.
It is also possible to take r copies of the tangent bundle and s copies of the cotangent
bundle to form the (r, s) tensor bundle

TM ⊗ · · · ⊗ TM ⊗ T ∗M ⊗ · · · ⊗ T ∗M. (5)

The sections of this bundle form (r, s) tensor fields. The (r, s) tensor bundles are particu-
larly important in general relativity because the important objects, such as the curvature
tensor and the metric tensor, are tensor fields.

There is a special way of constructing a vector bundle from local trivial bundles on a
manifold M . This is accomplished by taking an open cover of a manifold M , forming
trivial bundles with each of the sets of the cover and some vector space V , and gluing
the trivial bundles together to form a vector bundle.7 The bundles constructed this way
are called G-bundles because a group G is required to specify how the pieces connect
together. G-bundles are fibre bundles of particular interest in gauge theory because
gauge fields in Yang-Mills theories are described as sections of such bundles where the
group G is the internal symmetry group of the particular force in question. In the case
of electromagnetism, the gauge group is U(1), and thus the U(1)-bundle is fundamental
to the fibre bundle formulation of electromagnetism.

This finally brings us to the issue of gauge transformations. In order to state the
definition precisely we need a few more definitions. If we generalize the notion of an
endomorphism to vector bundles we can construct a bundle called the endomorphism
bundle. Given a vector bundle E over a manifold M , the endomorphism bundle End(E)
is the bundle E ⊗ E∗. The name is well chosen since the sections of End(E) are vector
bundle morphisms from (E, π,M) to itself. It turns out that each section of End(E)
is a C∞-linear map T : Γ(E) −→ Γ(E), mapping sections to sections. The notion of
an endomorphism bundle ties into the consideration of gauge transformations in the
context of G-bundles since the transformations T (p) that live in the gauge group G or

7See Appendix D for a formal summary of this construction.
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Lie algebra g8 are actually elements of the fibres End(Ep) of End(E). Tying things
together, T lives in g if T (p) lives in g for all p ∈ M . Now, if (E, π,M) is a G-bundle,
where G is some Lie group, and T ∈ End(E) then T is a gauge transformation if T (p)
lives in G for all p ∈ M . The set of all gauge transformations forms a group, which we
will denote G, to distinguish it from the gauge group G of the G-bundle.

2.3 Connection and Curvature

In order to consider derivatives of sections it is necessary to introduce a new object
called the connection. Suppose that (E, π,M) is a vector bundle and v is a vector field,
then a connection on M is a function Dv: Γ(E) −→ Γ(E), s Dvs, that is C∞-linear
in v and real-linear9 in s ∈ Γ(E) and satisfies the Leibniz law

Dv(fs) = v(f)s+ fDvs,

for any v ∈ V(M), s ∈ Γ(E) and f ∈ C∞(M). Dvs is called the covariant derivative of s
in the direction of v. If we work locally in some open set U ⊆M with local coordinates
xµ, the corresponding basis of coordinate vector fields ∂µ and basis of sections of E over
U , then we may obtain the expression

Dµej ≡ D∂µej = Ai
µjei, (6)

where the functions Ai
µj satisfying this relation are called the components of the vector

potential. The vector potential is useful because it enables one to obtain an expression
for the covariant derivative of a section s over U in the direction of v

Dvs = vµ(∂µs
i +Ai

µjs
j)ei. (7)

From the linearity of the last term in equation (7) it can be seen that the vector
potential maps a section and a vector field to another section. This enables one to
consider the vector potential as a section of the bundle End(E|U ) ⊗ T ∗U, making the
vector potential an End(E)-valued 1-form. With this one can define the vector potential
A to be

A = Ai
µjei ⊗ ej ⊗ dxµ,

and by suppressing the ‘internal indicies’ i and j the components can be written as

Aµ = Ai
µjei ⊗ ej .

8The phrase ‘live in’ is technical and is defined in Appendix C.
9Or complex-linear if E is a complex vector bundle
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This makes each of the components Aµ a section of End(E). The power of this way of
defining the vector potential is that A can be considered to be an End(E)-valued 1-form
on the entire manifold M . This enables us to give an expression for A

A =
∑

i

Ti ⊗ ωi,

where the Ti are sections of End(E) and the ωi are 1-forms on M . From this it can be
seen that

A(v) =
∑

i

ωi(v)Ti

defines a section of End(E). It turns out that any connection D can be written as
D0 +A:

Dvs = (v(si) +Ai
µjv

µsj)ei = D0
vs+A(v)s. (8)

The connection D0 is called the standard flat connection.

Besides enabling one to differentiate sections, the connection also allows one to move
around the vectors in the fibres of vector bundles with minimal change in the direction of
the vector. This shifting around of vectors is called parallel transport. Suppose (E, π,M)
is a vector bundle with a connection D defined on it. Let γ: [0, T ] −→M be a smooth
map from p to q and suppose that for t ∈ [0, T ], u(t) is a vector in the fibre of E over
γ(t). Then u(t) is parallel transported along γ if the following condition holds for all t:

Dγ′(t)u(t) ≡
d

dt
u(t) +A(γ′(t))u(t) = 0. (9)

The object Dγ′(t)u(t) is called the covariant derivative. This allows one to determine
the vector u(t) in Eγ(t) such that

u(0) = u, Dγ′(t)u(t) = 0

by solving a linear differential equation.

A companion object to the connection is an object called the curvature, which is
a measure of the failure of covariant derivatives to commute. Given a vector bundle
(E, π,M), two vector fields v and w on M and a connection D, the curvature F (v, w)
is defined to be the operator on sections of E defined by

F (v, w)s = DvDws−DwDvs−D[v,w]s,

where the last term is included to correct for the fact that the covariant derivatives
may fail to commute because the vector fields v and w fail to commute, i.e. have non-
vanishing Lie bracket. The curvature has the property that it is C∞-linear over v, w and
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s. A connection with curvature zero, F (v, w) = 0 for any v, w and s, is a flat conneciton.
Analogous to the case of the connection, it is possible to consider the curvature to be
an End(E)-valued 2-form. If we let Fµν be the section of End(E) given by

Fµν = F (∂µ, ∂ν),

then F (v, w) = vµwνFµν by linearity so that if ej ⊗ ei is a local basis of sections for
End(E), then we have

Fµν = F j
µνiej ⊗ ei.

The functions F j
µνi are the components of the curvature. This is made concrete by

defining the curvature 2-form F to be an End(E)-valued 2-form

F =
1
2
Fµνdx

µdxν ,

a section of the bundle End(E)⊗ΛT ∗M .

3 Fibre Bundles in Philosophy

The theory of fibre bundles enables the formulation of the theories of each of the four
known fundamental forces of nature. The theories of the strong, weak and electromagetic
fields are quantized Yang-Mills theories, which can be formulated as quantized versions
of the corresponding classical Yang-Mills theories. The classical Yang-Mills theories10

fundamentally involve G-bundles, where G is the gauge group of the theory in question:
U(1) for electromagnetism; U(1) × SU(2) for electroweak theory; and SU(3) for the
strong theory. The quantized versions of these three theories (QED, GWS electroweak
theory and QCD) form the main part of the standard model of particle physics. General
relativity, though a very different sort of theory, can also be formulated using fibre
bundles but the fundamental vector bundle is the tangent bundle of the spacetime
manifold.11

The rest of this paper is concerned with a survey of some philosophical issues in order
to examine the role that the fibre bundle formalism plays in the clarification of some of
the philosophical, particularly ontological, issues that are raised by the standard model
and general relativity and in the interplay between physics and mathematics.

10Any consideration of Yang-Mills theories in this paper will be resricted to the classical versions.
11It is possible to set up general relativity using a G-bundle as well, where the total space is the bundle

of frames B(M), G = GL(n, R) and the fibre F = Rn but we will not consider this formulation here.
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3.1 Ontology of Gauge Potentials

In classical electromagnetism the electromagnetic field can be calculated from a gague
potential called the 4-vector potential Aµ = (V, ~A), where V is the scalar potential and
~A is the vector potential,12 which are related to the electric (vector) field ~E and the
magnetic (pseudo-vector) field ~B by ~E = −1

c
∂ ~A
∂t − ~∇V and ~B = ~∇ × ~A. The gauge

field corresponding to Aµ is the electromagnetic tensor field Fµν = ∂µAν − ∂νAµ, which
has as its components the components of the electric and magnetic fields. The striking
feature of Aµ is that Fµν is invariant under the gauge transformation

Aµ −→ A′µ = Aµ − ∂µΛ,

for some differentiable scalar function Λ, which is what makes Aµ a gauge potential.

For classical particle dynamics, it is Fµν that determines the evolution of a particle in
an electromagnetic field and Aµ is just a convenient means for doing calculations. For
the quantum mechanical treatment of a particle, however, it is the 4-vector potential
that appears in the dynamical equation (Schrödinger’s equation) and this as it turns
out, causes Aµ to have observable consequences.13 The effect that can be attributed to
the 4-vector potential is, of course, the Aharonov-Bohm effect. The effect is produced
in a two slit experiment in which a solenoid is inserted between the slits on the screen
side of the experiment. It turns out that there is an observable shift in the interference
pattern on the screen due to the non-zero magnetic field from the solenoid, even though
the field value is, or can be made to be, zero outside of the solenoid. This observable
effect has been attributed to the 4-vector potential, barring some action at a distance
of the electromagnetic field, which implies that Aµ is somehow physically realized and
is not just a calculational aid.

The aspect of this that makes giving a physical interpretation to the 4-vector field
Aµ so difficult is that the shift in the interference pattern, as well as Fµν of course,
is identical for any A′µ obtained by a gauge transformation from Aµ. This makes it
difficult to suppose that each Aµ corresponds to something physically real since this
would imply a radical underdetermination in the theory. Given the character of the
situation it seems more natural to consider the physically real entity to be an element
of the space of 4-vector potentials modulo gauge transformations, so that each Aµ is

12The vector potential ~A, perhaps more appropriately called the 3-vector potential, should not be
confused with the vector potential Aµ from the previous section. As the notation suggests, the 4-vector
potential Aµ, however, is a special case of the vector potential Aµ from the previous section.

13Note that this does not require QED since we can consider a quantum mechanical particle moving
in a classical electromagnetic field.
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really just a representative of an equivalence class. This of course requires a deeper
examination. Before we take these ontological questions any further it is necessary to
bring the other gauge fields into the mix.14

The classical Yang-Mills theories are all generalizations of electromagnetism and, con-
sequently, share much of the same general structure. One of the most important struc-
tural features of this class of theory is a gauge potential from which the corresponding
gauge field can be obtained by covariant differentiation. The theory of fibre bundles
provides a nice way of making the similarities clear. The fundamental bundle for such
a gauge field theory is a G-bundle (E, π,M), where the Lie group G acts freely on the
total space E. Such a bundle is called a principal fibre bundle with fibre G, the structure
group of the bundle. In the case of Yang-Mills theories M is the spacetime manifold
or some object mathematically related to it. The gauge potential15 is determined by
a G-connection on this principal fibre bundle. The vector potential is the quantity A
when represented as in equation (8). Given a particular section of E, which corresponds
to a specification of the gauge, the vector potential can be locally expressed uniquely in
the familiar form Aµ as described in the previous section by pulling back the one-form
field onto the manifold M . The gauge field16 is then represented by the curvature of
the vector potential. Similarly the gauge field can be given the usual local coordinate
representation Fµν , a 2-form field on M , by pulling back the curvature.

Depending on the topological characteristics of the bundle, sections may only be
definable locally. In such a case the terms ‘section’ and ‘gauge transformation’ must be
predicated by the term ‘local.’ It turns out that the lack of ‘magnetic monopoles’ in
the given Yang-Mills theory obviates this restriction, allowing the definition of global
sections and gauge transfomations. As is reflected by the divergence free magnetic
field in Maxwell’s equations, there do not appear to be any ‘electromagnetic’ magnetic
monopoles, so that the vector potential can be given a global description as a 1-form
field on M .

The fibre bundle formalism also makes plain the connection between the principal fibre
bundle for the theory and other associated vector bundles17 derived from it that describe
other aspects of a given system. An example of this that is relevant to the present case is
that a quantum mechanical particle can be represented by an associated vector bundle
that is a G-bundle where the fibre is not the gauge group G itself but a representation

14The exposition to follow owes much to Healey’s paper [5].
15The usual electromagetic 4-vector potential in the case of electromagnetism
16The electromagnetic field in the case of electromagnetism
17It is possible to generate new vector bundles from a principal fibre bundle using the action of G, see

[6] pp. 135-36. Such bundles are called associated vector bundles.
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of it and the base space is the same spacetime manifold M . The wave-function of a
particle in the position representation is given by a section of this vector bundle. The
value of the section for a particular p ∈ M is the phase of the wave-function in that
position representation. Interestingly, there is a one to one correspondence between
sections of the principal bundle and sections of the associated bundle. This implies
that a gauge transformation on the principal bundle induces a gauge transformation on
the associated bundle. The gauge transformations on both bundles leave the physics of
both the particle and the electromagnetic field invariant, so ‘gauge transformation’ is an
appropriate term for both. The fact that the associated gauge transformations of the
gauge potential and the wave-function come out of the mathematics rather than having
to be imposed seems to be a strength of the fibre bundle formulation.

Thus, it is clear that the fibre bundle formalism makes plain the connection between
the gauge fixing of the gauge potential and the phase of the wave-function of a particle
evolving in the presence of the corresponding gauge field. It is also instructive because
it gives a coordinate free representation of all of the physical objects involved. De-
spite these advantages, however, the choice of a connection on the principal fibre bundle
does not uniquely specify the gauge field and the phase of the wave-function. Cerain
G-connections of the principal fibre bundle that are related by a gauge transforma-
tion g from the group G, described in the previous section, leave the physics invariant.
G-connections related in this way are called gauge-equivalent, Thus the gauge poten-
tial A is not a good candidate for a physically real object since it retains the same
underdetermination of Aµ mentioned above. This is so since there is no evidence that
gauge-equivalent quantities are experimentally distinguishable. Thus, we seek some kind
of gauge-invariant quantity that could represent the ‘physical’ gauge potential, viz., a
mathematical object that represents the phenomenon that gives rise to the phase shift
in the Aharonov-Bohm effect (or its equivalent for other gauge fields).

Following the intuition described above, the fibre bundle formalism naturally suggests
a corresponding candidate. Denoting the space of G-connections on the principle fibre
bundle by A, the quotient A/G, called the space of connections modulo gauge transfor-
mations, is this candidate space of gauge-invariant quantities. Thus, then the ‘physical’
gauge potential would correspond to an element of A/G. Such a construction is more
natural in the case of the fibre bundle theory since A/G is an object of independent
interest in gauge theory. Healey [5], however, suggests another gauge-invariant quantity
to correspond to the ‘physical’ gauge potential, namely Wilson loops.18 This is a sensible

18A Wilson loop is formed by taking the trace of the holonomy around a loop in M . The holonomy
of a curve from p to q in M given some connection D is a map from Ep to Eq taking each vector in Ep

to its parallel transported counterpart in Eq. In the case where the curve is a loop, the holonomy is a
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suggestion since in the case of electromagnetism, a U(1) gauge theory, the Wilson loop is
simply the phase acquired by a charged particle as it moves around a loop in the vector
potential corresponding to the G-connection and this is precisely the sort of phase that
gives rise to interference effects like the Aharonov-Bohm effect [2]. Interestingly, for
abelian gauge theories, such as electromagnetism, the holonomy itself is gauge-invariant
but for non-abelian gauge theories only the Wilson loop is gauge-invariant [2]. A further
discussion of this is beyond the scope of this paper, so I will move on to discuss how
fibre bundles tie into ontological issues in the case of general relativity.

3.2 Relationism versus Substantivalism in General Relativity

The debate between substantivalists, who consider spacetime (or just space) to be on-
tologically prior to matter-energy, and relationists, who give ontological priority to spa-
tiotemporal relations between material entities, has been going on since the time of
Newton and Liebniz. The character of the recent debate bears little similarity to the
original one between Newton and Leibniz, however, because since the development of
gauge theories, especially electromagnetism—the original gauge theory, it has become
necessary to consider matter-energy fields rather than particles, and because the geo-
metric properties of spacetime itself have been attached to a special field, namely the
metric field, since the development of general relativity. The consideration of the met-
ric as another sort of field comes from the fact that it, as all gauge fields do, contains
energy-momentum,19 which implies that it should be considered as a ‘material’ object
contained within spacetime and should not be considered part of spacetime itself. Thus,
the recent tradition, notably Earman [3] and Earman and Norton [4], has been to con-
sider the bare manifold M to be spacetime. Then the point of debate is whether or not
the spacetime manifold is substantival.

In the wake of the collapse of logical positivism there was a revitalization of scientific
realism among philosophers, including realism about spacetime. The weight of support
has now switched over to the relationsim side as a result of the (re-)discovery of argu-
ments that challenge substantivalism. The most prominent such argument is a modern
form of Einstein’s ‘hole argument’ given by Earman and Norton [4]. The argument uses
a model theoretic approach to show that manifold substantivalism leads to a pernicious
form of indeterminism for a large class of spacetime theories. The argument proceeds
as follows. First of all, a model of a local spacetime theory consists of an (n+1)-tuple
(M,O1, . . . , On), where M is a manifold and the Oi comprise a set n geometric objects,
subject to the following condition: a subset of the Oi vanish, giving the field equations

map from Ep to itself, where p is the starting point of the loop.
19Particularly in the form of gravitational waves, predicted by general relativity, which can exist in a

universe in which all gauge fields are zero everywhere.
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for the theory, i.e.
Ok = 0;Ok+1 = 0; · · · ;On = 0,

and the objects in the field equations are tensors. This condition implies that for any
model M = (M,O1, . . . , On) of the spacetime theory and a diffeomorphism h of M ,
the (n+1)-tuple (M,h · O1, . . . , h · On) is also a model, call it M′, because the field
equations are tensor equations. This leads directly to the hole argument. Suppose M is
a model of a local spacetime theory T with manifold M and let H be any open set of
M (the hole). Then because there are arbitrarily many diffeomorphisms of M that are
the identity on M \H and differ smoothly from the indentity on H, there are arbitrarily
many distinct models Mi of T that differ from one another only in the hole H.20 Since
general relativity is a local spacetime theory of this type, the hole argument applies to
general relativity.

Now, for the manifold substantivalist, each of the models Mi represent physically
distinct spacetimes because the diffeomorphism that takes M to Mi changes the fields
on M within the hole H so that the same points on the manifold M are assigned differ-
ent field values. Since the manifold is considered to be physically real, a different field
assignment constitutes a different physical situation. The indeterminism then arises for
the manifold substantivalist due to the fact that the evolution of fields is not determined
by their specification on any set of spacelike hypersurfaces S if the hole appears in the
future of each of the elements of S. In fact, as Earman and Norton [4] mention, even
a local specification of a spacelike hypersurface together with some boundary condition
produces the same indeterminism if the hole is in the future of the hypersurface and the
interior of the boundary. Furthermore the substantivalist commits herself to other prob-
lems since the only physical observables are point-coincidences and such coincidences
are preserved by diffeomorphisms, so the substantivalist is then committed to physically
different spacetimes Mi that are empirically indistinguishable. These two problems to-
gether, Earman and Norton argue, make manifold substantivalism an untenable position
since the substantivalist is committed a priori to indeterminism, which is unacceptable
because if determinism fails, then ‘it should fail for a reason of physics, not because of
a commitment to substantival properties which can be eradicated without affecting the
empirical consequences of the theory’ [4].

This provides a natural opening for the relationist, who denies the existence of the
spacetime manifold M . The spacetime models Mi preserve spatiotemporal relations
and so the relationist can argue that they represent the same physical situation. Thus,
for the relationist, diffeomorphism invariance is a non-physical symmetry of the theory,

20Consider i to be an element of some index set I for all such models.
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something reminiscent of gauge freedom. It turns out that the theory of fibre bundles
enables a clarification of the status of diffeomorphism invariance as a gauge invariance
in general relativity.

The fundamental objects in general relativity are the spacetime manfold M and the
Lorentzian spacetime metric g. The pair (M, g) is a pseudo-Riemannian manfiold,21

which we will refer to simply as the spacetime manifold M . The metric g is a symmetric
C∞-linear bilinear form on V(M), the space of vector fields on M . This enables one to
consider g to be a (0, 2) tensor field, which can be considered as a section of the (0, 2)
tensor bundle T ∗M ⊗ T ∗M , see (5). Given a set of local coordinates, we can write the
metric in the component form gµν .

It is tempting to follow the lead of the previous section and look for a way of dividing
metrics into equivalence classes of physically equivalent metrics by constructing orbits
of sections of some subbundle of the (0, 2) tensor bundle22 under the action of the diffeo-
morphism group Diff(M) on M . It turns out that this can be done, viz. one can form the
quotient Riem(M)/Diff(M) of Lorentzian metrics modulo diffeomorphisms. This turns
out to be problematic, however, because the ‘Gribov-Singer effect means that there is
an intrinsic obstruction to choosing a gauge that works for all physical configurations;’
Isham goes on to mention that ‘whether or not this has any real significance in the
theory is still a matter of debate.’ [6], 134. Nevertheless, the relationist view leads one
to take view general relativity as a gauge theory, with Diff(M) as the space of gauge
transformations. Moreover, this perspective is given concreteness by the fibre bundle
formalism which enables the construction of a principal bundle with Diff(M) as the
structure group that has the property that the quotient space Riem(M)/Diff(M) gives
the physically distinct metrics on M .

3.3 The Generality of Fibre Bundles

The power of the theory of fibre bundles seems to derive from its great generality,
but with this generality also comes the unification of a large variety of mathematical
and physical systems. It is this aspect of the fibre bundle theory that should make it of
interest not only to philosophers of physics but also philosophers of mathematics. This
section is devoted to an attempt give an indication of how remarkable the ability of the
fibre bundle formalism to unify concepts actually is.

21The prefix ‘pseudo’ applies because the metric is not positive semi-definite. Specifically the metric
g is Lorentzian, i.e. has signiture (1, 3).

22It would need to be a subbundle of the (0, 2) tensor bundle because not all sections of the (0, 2)
tensor bundle are metrics. This is so since not all sections have the requisite symmetry property.
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The fibre bundle formalism is built upon the theory of differential geometry on mani-
folds. As a result of this it incorporates the features and strengths of differential geom-
etry but it does so in a very natural way. Differential geometry itself generalizes vector
calculus on Rn, providing a framework essential to modern physics and mathematics.
One of the indications of the power of the generalization to differential geometry is the
ability to express Maxwell’s equations in coordinate free form. As mentioned in section
3.1, the electromagnetic field is written as a 2-form field F on some manifold M . In the
case that M is Minkowski space F can be split up into electric and magnetic fields,

F = B + E ∧ dt, (10)

where the magnetic field B is the 2-form B = Bxdy ∧ dx + Bydz ∧ dx + Bzdx ∧ dy,
and the electric field E is the 1-form E = Exdx+ Eydy + Ezdz and t is the coordinate
time. From the properties of the exterior derivative operator d, the divergence is just
the exterior derivative of 2-forms on R3 and the curl is the exterior derivative of 1-forms
on R3 which means that the first two Maxwell equations,

∇ · ~B = 0, ∇× ~E +
∂ ~B

∂t
= 0,

can be written as
dF = 0. (11)

By employing the Hodge star operator ?: Ωp(M) −→ Ωn−p(M), for n-dimensional man-
ifold M (in the present resricted case M = R3 for the vector fields) the last two of
Maxwell’s equations,

∇ · ~E = ρ, ∇× ~B − ∂ ~E

∂t
= ~j,

can be written as
?d ? F = J, (12)

where J = j − ρdt, is the current written as a 1-form.23 The remarkable aspect of
equations (11) and (12) are that they now hold for any 4-manifold M where it is not
required that F can be split as in equation (10). This approach is also interesting
because it incorporates the fact that ~B is a pseudo-vector field because B is invariant
under a parity transformation by virtue of the fact that it is a 2-form.

Now, all of this can be done using just coordinate free differential geometry but the
concepts are more clear with a shift to the fibre bundle formalism. A differential form is
understood as a section of the form bundle ΛT ∗M . The p-forms are just sections of the

23Here ~j = j1∂1 + j2∂2 + j3∂3, which can be converted into the 1-form is j = j1dx1 + j2dx2 + j3dx3.
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subbundles ΛpT ∗M of the form bundle. In the fibre bundle formalism this is naturally
generalized to the case of the exterior algebra bundle ΛE for any vector bundle E. It
can then be shown that the exterior derivative and the Hodge star operator can be
generalized to act on End(E)-valued differential forms. Then when supplied with a
connection D on the bundle E, this determines a exterior derivative dD on End(E)-
valued differential forms which, for any End(E)-valued 2-forms, such as the gauge field,
the Bianchi identity

dDF = 0 (13)

holds. This is the Yang-Mills generalization of (11). Then, with the appropriate gener-
alization of ?,24 and any End(E)-valued 1-form J on M , called the current, we obtain
the Yang-Mills equation

?dD ? F = J, (14)

the generalization of (12). Equations (13) and (14) are the field equations for classical
Yang-Mills theories discussed in section 3.1, which are naturally formulated in the theory
of fibre bundles.

Thus, we see that differential geometry generalizes calculus on Rn to general smooth
manifolds, but that the theory of fibre bundles generalizes differential geometry and
provides a general framework that clearly expresses the structural similarities between
the classical versions of the theories of the standard model. The quantized versions of
the Yang-Mills theories can then be obtained from the Yang-Mills Lagrangian by path-
integral quantization of the Yang-Mills action [2]. Moreover, the structure of the fibre
bundle formalism elucidates connections between different phenomena, as was seen in
section 3.1 in the conneciton of the principal bundle to the associated bundle describing
the quantum mechanical particle. This is the sense in which the fibre bundle formalism
seems to not only have great mathematical generality, but also a strong capacity for
conceptual unification of mathematical and physical systems. This seems to derive from
the fact that the fibre bundle formalism uses a relatively small number of extremely
flexible concepts, such as section, connection and curvature and the notion of a fibre
bundle itself.

The generality and flexibility of these concepts is demonstrated nicely by the formu-
lation of general relativity using fibre bundles. As mentioned in the opening of section
3, the fundamental bundle in general relativity is the tangent bundle of the spacetime
manifold M . It turns out that the choice of metric g25 on M gives rise to a unique

24See [2] p. 261.
25Or gαβ in local coordinates

17



connection on the tangent bundle that is metric preserving and torsion free26, called the
Levi-Civita connection ∇. In analogy to the case of a vector potential, given a local
basis of coordinate vector fields on M the Christoffel Symbols Γγ

αβ for the Levi-Civita
connection are given by

∇α∂β = Γγ
αβ∂γ .

The equation for parallel transport naturally adapts from the general theory of fibre
bundles. This can be used to obtain the familiar geodesic equation

d2γδ

dt2
+ Γδ

αβ

dγα

dt

dγβ

dt
, (15)

which specifies the kinematics. The curvature of the Levi-Civita connection just turns
out to be the Riemann curvature tensor R(u, v):

R(u, v)w = (∇u∇v −∇v∇u −∇[u,v])w.

Given a local basis of vector fields the Riemann tensor can be expressed in the usual
way, viz. by its coordinates Rα

βγδ. Then in the usual way the contraction Rαβ = Rγ
αγβ

is the Ricci tensor and the contraction R = gαβRαβ = Rα
α is the Ricci scalar. Then if

we let Tαβ be the sress-energy tensor, then we may write the Einstein equations as

Rαβ −
1
2
Rgαβ = 8πTαβ .

Thus we see that with general relativity, as with Yang-Mills theories, the choice of the
appropriate vector bundle, the general theory of sections, connections and curvature
enables the theory to be set up in a conceptually economical and clear way. It is
particularly nice in the case of general relativity since, with two natural restrictions, the
connection on the tangent bundle is unique and turns out to be the standard connection
used in the differential geometric formulation of GR and its curvature is the fundamental
Riemann tensor.

This capacity for clear exposition of ideas seems to be another of the great advantages
of the fibre bundle formalism. Contemporary theories in physics are extrordinarily com-
plex conceptually and a conceptual framework that naturally brings out the important
structural features and connections between different parts of a theory and among differ-
ent theories is extremely advantageous. This seems to give the fibre formalism a genuine
epistemological advantage over less general mathematical frameworks. It is not yet clear

26The metric preserving property means that tangent vectors do not change length when parallel
translated, just the condition we require. The torsion free property means that tangent vectors do not
rotate when parallel transported [2], but the details of this are not important to us here.
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whether the fibre bundle formalism reflects a something deep about the structure of the
physical world but it is intriguing that all of the fundamental theories of modern physics
admit of a similar treatment within it.27 Of course the fibre bundle theory does not
enable general relativity to be expressed in the same form as Yang-Mills theories, but it
does make certain similarities and differences plain. Perhaps insight into the origin of
these similarities and differences will lead to a development of a reconciliation of general
relativity and the standard model. In any case, an examination of these similarities and
differences between the two in a single mathematical framework is sure to be instructive.

4 Conclusion

We have seen that the fibre bundle theory provides a cohesive framework for the treat-
ment of the fundamental theories of modern physics, has great power inherent in it
due to its generality and helps to clarify the treatment of the ontology of gauge po-
tentials and the metric field. Its abilty to formulate theories makes it an indispensible
tool for philosophers of physics, who must understand the structure of physical theories
in order to examine what they say about the world, because the formalism makes the
structural characteristics of theories clear, at least in the classical case that we have
considered here. Its ability to generalize mathematical concepts and provide a uniform
treatment for various physical theories should also make it of interest to philosophers of
mathematics.

The fibre bundle formalism is clearly relevant to the philosophy of contemporary
physics and mathematics. Indeed, the discussion in this paper has only scratched the
surface of this deep and intriguing mathematical theory. The power and flexibility of
the theory also suggests that it will be useful to philosophers interested in the history
and philosophy of physics and mathematics since it could provide a useful framework for
comparing different theories in the historical development. In sum, the above discussion
serves to illustrate that the theory of fibre bundles is sure to be an object of lasting
interest and utility to philosophers of physics and mathematics.

27Especially given the formulation of general relativity using the principal bundle of frames, see foot-
note 11.
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A Definitions from Differential Geometry

A.1 Manifolds

topological space: a set X together with a family of subsets of X, called the open
sets, which satisfy the following conditions:

1. The empty set and X are open sets

2. If U, V ⊆ X are open, so is U ∩ V .

3. If the sets Uα ⊆ X are open, so is the union
⋃
Uα.

topology: the topology of X is the set of its open subsets.

neighborhood: an open set containing a point x ∈ X is a neighborhood of x.

closed set: A set which is the complement of an open set.

continuous function: a function f : X −→ Y is continuous if, given any open set
U ⊆ Y , f−1(U) ⊆ X is open.

homeomorphism: a continuous function with a continuous inverse.

chart: given a toplogical space X and an open set U ⊆ X, a chart is a homeomorphism
ϕ: U −→ Rn, where the inverse is defined on ϕ(U).

n-dimensional manifold: a topological space M together with charts ϕα: Uα −→ Rn,
where Uα are open sets covering M , such that the transition function ϕα ◦ϕ−1

β

is smooth where defined.

A.2 Vector Fields

Algebra: a vector space V together with a law of composition, called a product, of
two vectors that turns V into a ring. A commutative algebra is an algebra with a
commutative product.

Module: Let R be a commutative ring. An R-module V is an abelian group with
law of composition +, together with a scalar multiplication R× V −→ V, written
(r, v) rv, which satisfies the following axioms:

1. 1v = v,

2. (rs)v = r(sv),

3. (r + s)v = rs+ rv,

4. r(v + v′) = rv + rv′,
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for all r, s ∈ R and v, v′ ∈ V . Note that an F -module, where F is a field, is an
F -vector space. A free module is an R-module that is isomorphic to Rk for some
k ∈ N.

C∞(M): the commutative algebra of infinitely differentiable real valued functions on
M .

vector field: a vector field v is a linear function v: C∞(M) −→ C∞(M) that satisfies
the Leibniz property:

v(fg) = v(f)g + fv(g).

V(M): the set of vector fields on M . With the addition operation

v + w ≡ (v + w)(f) = v(f) + w(f),

and the ‘scalar multiplication’ operation

gv ≡ (gv)(f) = gv(f),

V(M) is a free module over C∞(M).

tangent vector: suppose p ∈ M , then a tangent vector at p is a linear function
vp: C∞(M) −→ R that satisifes a Leibniz rule

vp(fg) = vp(f)g(p) + f(p)vp(g).

Note that given v ∈ V(M), vp(f) ≡ v(f)(p) is a tangent vector at p.

tangent space at p: the set Tp(M) of all tangent vectors at p ∈M . Using the natural
definitions (similar to above) of addition and scalar multiplication, Tp(M) is a real
vector space.

curve: if I is an interval of R, then a curve is a smooth function γ: I −→ M , i.e. for
any f ∈ C∞(M), f(γ(t)) depends smoothly on t. The tangent vector γ′(t) is the
function γ′(t): C∞(M) −→ R defined by f  d

dtf(γ(t)).

pullback: let M and N be manifolds and let ϕ : M −→ N be a function. If f : N −→ R
is a function, then the pullback of f is a function ϕ∗f : M −→ R given by

ϕ∗f = f ◦ ϕ.

(smooth) map: a function ϕ: M −→ N is smooth if f ∈ C∞(N) implies that ϕ∗f ∈
C∞(M).
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pulling back: given a map ϕ: M −→ N, pulling back is an operation

ϕ∗: C∞(N) −→ C∞(M).

pushforward: let M and N be manifolds and let ϕ: M −→ N be a function. If
v ∈ Tp(M), then the pushforward of v by ϕ is a function ϕ∗v: C∞(N) −→ R given
by

ϕ∗v = v ◦ ϕ∗,

where ϕ∗v ∈ Tϕ(p)(N).

pushing forward: given a map ϕ: M −→ N and a point p ∈ M , pushing forward is
an operation

ϕ∗: Tp(M) −→ Tϕ(p)(N).

integral curve: let v ∈ V(M) and p ∈ M . The integral curve through p of the vector
field v is the solution γ(t) to the initial value problem

γ′(t) = vγ(t); γ(0) = p.

integrable vector field: a vector field for which all the integral curves are defined for
all t.

flow: let v be an integrable vector field. The flow generated by v is the family of smooth
maps {ϕt}, ϕt: M −→M, obtained as solutions to the equation

d

dt
ϕt(p) = vϕt(p).

Lie Bracket (commutator): if v, w ∈ V(M), the Lie bracket [v, w] is defined by

[v, w] = vw − wv.

The Lie Bracket is a vector field on M.

A.3 Differential Forms

1-form: if M is a manifold, then a 1-form is a linear (over C∞(M)) map from V(M)
to C∞(M).

Ω1(M): the space of all 1-forms on a manifold M . Ω1(M) is a free module over C∞(M).

exterior derivative: the exterior derivative (or differential) of f is the 1-form df de-
fined by

df(v) = vf.
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differential: the linear map d: C∞(M) −→ Ω1(M) defined by f  df . The differential
satisfies a Leibniz law:

d(fg) = fdg + gdf.

cotangent vector: let M be a manifold and let p ∈ M . A cotangent vector ω at p
is a linear map ω: Tp(M) −→ R. Note that given ω ∈ Ω1(M) and v ∈ V(M),
ωp(vp) ≡ ω(v)(p) is a cotangent vector at p.

cotangent space at p: the set T ∗p (M) of all cotangent vectors at p. Using natural
definition of addition and scalar multiplication, T ∗p (M) is a vector space.

dual of f : gien a linear function f : V −→ W , where V and W are vector spaces, a
dual function f∗: W ∗ −→ V ∗ defined by (f∗ω)(v) ≡ ω(f(v)).

pullback (of cotangent vector): let ϕ: M −→ N be a mapping between manifolds,
with ϕ(p) = q. Then the pullback of ω ∈ Tq(N) by ϕ is the function ϕ∗ω: T ∗q (N) −→
T ∗p (M) defined by

(ϕ∗ω)(v) = ω(ϕ∗v).

pullback (of a 1-form): The pullback of ω ∈ Ω1(N) is the 1-form ϕ∗ω ∈ Ω1(M),
where the map is defined by

(ϕ∗ω)p = ϕ∗(ωq).

natuarality of the differential: given a function f on N and a map ϕ: M −→ N ,
we have

ϕ∗(df) = d(ϕ∗f).

local coordinates: let ϕ: U −→ Rn be a chart, then the pullback of the coordinate
functions xµ on Rn to U by ϕ gives a set of local coordinates on U denoted simply
by xµ.

coordinate vector fields: let ϕ: U −→ Rn be a chart, then the pushforward of the
coordinate vector fields ∂µ by ϕ−1 form a basis for vector fields on U . These basis
elements, denoted simply by ∂µ, are the coordinate vector fields associated to the
local coordinates xµ on U . Thus one writes vector fields on U as

v = vµ∂µ ≡ ϕ∗vµϕ−1
∗∂µ.

coordinate 1-forms: let ϕ: U −→ Rn be a chart, then the pullback of the coordinate
1-forms dxµ by ϕ form a basis for 1-forms on U . These basis elements, denoted
simply by dxµ, are the coordinate 1-forms associated to the local coordinates xµ

on U . Thus one writes 1-forms on U as

ω = ωµdx
µ ≡ ϕ∗ωµϕ

∗dxµ.
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change of basis (vector fields): the change of basis formula for vector fields is

∂µ =
∂x′ν

∂xµ
∂′ν ,

which in terms of coordinates gives

v′ν =
∂x′ν

∂xµ
vµ,

change of basis (1-forms): the change of basis formula for 1-forms is

dx′ν =
∂x′ν

∂xµ
dxµ,

which in terms of coordinates gives

ω′ν =
∂xµ

∂x′ν
ωµ,

dual basis: given a general basis eµ for vector fields on a chart U , where eµ = T ν
µ∂µ

for some invertible T ν
µ , there exists a unique dual basis of 1-forms fµ on U such

that fµ(eν) = δµ
ν .

exterior algebra: let V be a vector space. The exterior algebra, denoted ΛV , is the
algebra generated by wedge products of elements of V , i.e. v ∧ w for v, w ∈ V ,
subject to the constraint v ∧ w = −w ∧ v.

ΛpV : the subspace of ΛV consisting of linear combinations of p-fold products of vectors
in V , e.g. v1 ∧ · · · ∧ vp. Elements of V in this set are said to have degree p. Λ0V is
defined to be R. The dimension of ΛpV is

(
n
p

)
if V is an n-dimensional space and

ΛpV is empty if p > n. It also happens to be the case that

ΛV =
⊕

ΛpV

and that ΛV is 2n dimensional.

differential forms: the differential forms on a manifold M is the algebra, denoted
Ω(M), generated by wedge products of elements of Ω1(M) subject to the constraint
ω ∧ µ = −µ ∧ ω for each ω, µ ∈ Ω1(M). Locally finte linear combinations, i.e.
linear combinations for which for every point p in M has a neighborhood where
only finitely manyy terms are nonzero.
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Ωp(M): the space of all linear combinations of p-forms, i.e. products of p 1-forms. With
this we have that

Ω(M) =
⊕

p

Ωp(M).

exterior derivative (differential): the unique set of maps

d: Ωp(M) −→ Ωp+1(M)

such that the following properties hold:

1. d : Ωp(M) −→ Ωp+1(M) agrees with the previous definition.

2. d(ω + µ) = dω + dµ and d(cω) = cdω for all ω, µ ∈ Ω(M) and c ∈ R.

3. d(ω ∧ µ) = dω ∧ µ+ (−1)pω ∧ dµ for all ω ∈ Ωp(M) and µ ∈ Ω(M).

4. d(dω) = 0 for all ω ∈ Ω(M).

The differential has the very important property that d2 = 0.

natuarality of the differential: given a differential form ω ∈ Ωp(N) and a map
ϕ: M −→ N , we have

ϕ∗(dω) = d(ϕ∗ω).

closed differential form: a differential form for which the exterior derivative is zero.

exact differential form: a differential form that is the exterior derivative of a differ-
ential form.

B Definitions from Lie Group Theory

B.1 Lie Groups and Lie Algebras

Lie group: Let G be a group with law of composition · : G × G −→ G given by
(g1, g2)  g1 · g2 ≡ g1g2. A real Lie group GL is a group that is also a man-
ifold such that the mapping from any element to its inverse and the mapping
from any two elements to their product are smooth maps. This last condition is
equivalent to the condition that the mapping (g1, g2) g1g

−1
1 is C∞.

Group action: Let G be a group and let S be some set. Then G acts on S if there
exists a map G × S −→ S defined by (g, s)  s′, where g ∈ G and s, s′ ∈ S that
satisfies the following axiom: (gg′, s) = (g, (g′, s)) for any g, g′ ∈ G and s ∈ S. In
this case S is called a G-set.
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Free action: Let S be a G-set. Then G acts freely on S if the only group element that
satisfies the condition gs = s for all s ∈ S is the identity element of G.

right and left translations: The right and left translations of GL are the diffeomor-
phisms of GL labelled by the elements g ∈ GL and defined by:

rg: G −→ G, g′  g′g (16)

lg: G −→ G, g′  gg′. (17)

group representation: A group representation is a homomorphism ρ: G −→ GL(V ),
where GL(V ) denotes the general linear group of V , viz. the space of linear
transformations on V .

Lie group homomorphism: A homomorphism of Lie groups is a homomorphism of
groups that is also smooth map between the underlying manifolds of the two Lie
groups.

Lie group representation: A Lie group representation is a group representation where
the homomorhpism ρ is a homomorphism of Lie groups.

Lie Algebra: If G is a Lie group, then the Lie algebra of G, denoted g, is the tangent
space of the identity element of G, TeG. TeG is isomorphic to the space of all
left-invariant vector fields L(G), so both can be considered as g the Lie Algebra
of G.

left-invariant vector field: A vector field X on a Lie group G is left-invariant if it is
lg-related to itself for all g ∈ G, i.e.

lg∗X = X for all g ∈ G,

where lg∗ is the push forward map of lg, defined by (17). Similarly a vector field X
is right-invariant if it is rg-related to itself for all g ∈ G. The set of all left-invariant
vector fields on a Lie group G is denoted L(G) and is a real vector space.

Lie bracket: for any two left-invariant vector fields X1 and X2, their commutator or
Lie bracket [X1, X2] ≡ X1X2 −X2X1 is also a left-invariant vector field. The Lie
bracket has a set of identifying properties, viz. antisymmetry, bilinearity and the
Jacobi identity:

[A, [A′, A′′]] + [A′, [A′′, A]] + [A′′, [A,A′]] = 0, for all A,A′, A′′ ∈ g.

homomorphism of Lie Algebras: A homomorphism of Lie algebras is defined as a
linear map ρ: g −→ h such that ρ([A,A′]) = [ρ(A), ρ(A′)] for all A,A′ ∈ g.
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C Definitions from the Theory of Fibre Bundles

C.1 Fibre Bundles

bundle: A bundle is defined to be a structure (E, π,M) consisting of a smooth manifold
E, a smooth manifold M and an onto smooth map π: E −→M .28 The manifold
E is called the total space or bundle space, the manifold M is called the base space,
and π is called the projection map. For each point p ∈ M , the inverse image of p
under π

Ep = {q ∈ E : π(q) = p}

is called the fibre over p.

fibre bundle: If for each p ∈M Ep is homeomorphic to a common space F , then F is
known as the fibre of the bundle and the bundle is called a fibre bundle.

bundle morphism: A morphism of two bundles π: E −→ M and π′: E′ −→ M ′ is a
map ψ: E −→ E′ together with a map φ: M −→M ′ such that ψ maps each fibre
Ep into the fibre E′

φ(p). These maps have the property that π′ ◦ ψ = π ◦ φ.

bundle isomorphism: A bundle morphism is an isomorphism if both φ and ψ are
diffeomorphisms.

restriction of a bundle: The resriction of a bundle π: E −→ M to a submanifold
S ⊆ M is formed by total space E|S = {q ∈ E|π(q) ∈ S}, base space S and
projection map π|S .

trivial bundle: bundles (E, π,M) that have the property that they are isomorphic to
a product bundle (M × F, pr,M) for some space F .

locally trivial bundle: A bundle is called locally trivial with standard fibre F if for
each point p ∈ M , there is a neighborhood U of p and a bundle isomorphism
φ: E|U −→ U × F .

section or cross-section: A section of a bundle (E, π,M) is a map s: M −→ E such
that the image of each point p ∈M lies in the fibre Ep over p.

vector bundle: An n-dimensional real vector bundle is a locally trivial fibre bundle
(E, π,M) where each fibre Ep is an n-dimensional vector space provided that for
each p ∈ M there is a neighborhood U of p and a local trivialization φ: E|U −→
U × Rn that maps each fibre Ep to the fibre {p} × Rn linearly.

28The resriction that E, M and π be smooth technically makes the bundle in question a C∞-bundle.
For E and M topological manifolds and π continuous, (E, π, M) would be a bundle. But since we are
will always have the former restrictions the will be no confusion caused by calling C∞-bundles ‘bundles.’
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dual bundle: Given a vector bundle (E, π,M) one can construct the dual bundle
(E∗, π∗,M), where

E∗ =
⋃

p∈M

E∗
p ,

where E∗
p is the dual space of Ep and π∗: E∗ −→M the map from each E∗

p to p.

direct sum vector bundle: given two vector bundles (E, π,M) and (E′, π′,M) it is
possible to construct the direct sum vector bundle E⊕E′ over M , where the fibre
over p ∈M is Ep ⊕ E′

p

tensor product vector bundle: given two vector bundles (E, π,M) and (E′, π′,M)
it is possible to construct the tensor product vector bundle E ⊗E′ over M , where
the fibre over p ∈M is Ep ⊗ E′

p.

exterior algebra bundle: Given a vector bundle E one can define an exterior algebra
bundle ΛE where the fibre over p ∈M is ΛEp. The sections of the exterior algebra
bundle form an algebra when fitted with a wedge product.

G-bundle: See Appendix D.

T lives in G: if p ∈ Uα, then T lives in G if it is of the form

[p, v]α 7−→ [p, gv]α

for some g ∈ G.

T lives in g: Consider the Lie algebra g of G, T : Ep −→ Ep lives in g if it is of the
form

[p, v]α 7−→ [p, dρ(x)v]α

for some x ∈ g.

endomorphism: Given a vector space V the linear functions from V to itself are called
endomorphisms. The vector space of all endomorphisms is denoted End(V ), fol-
lowing [2].

endomorphism bundle Given a vector bundle E over a manifold M , the endomor-
phism bundle End(E) is the bundle E ⊗ E∗.

gauge transformation: if (E, π,M) is a G-bundle, where G is some Lie group, and
T ∈ End(E) then T is a gauge transformation if T (p) lives in G for all p ∈ M .
The set of all gauge transformations forms a group, which we will denote G, to
distinguish it from the group G of the G-bundle.
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C.2 Connection and Curvature

connection: Suppose that (E, π,M) is a vector bundle and v is a vector field, then a
connection on M is a function Dv: Γ(E) −→ Γ(E), s Dvs, that is C∞-linear in
v and real-linear29 in s ∈ Γ(E) and satisfies the Leibniz law

Dv(fs) = v(f)s+ fDvs,

for any v ∈ V(M), s ∈ Γ(E) and f ∈ C∞(M).

covariant derivative: Dvs is called the covariant derivative of s in the direction of v.

vector potential: the vector potential A is

A = Ai
µjei ⊗ ej ⊗ dxµ,

and by suppressing the ‘internal indicies’ i and j the components can be written
as

Aµ = Ai
µjei ⊗ ej .

standard flat connection: any connection D can be written as D0 +A:

Dvs = (v(si) +Ai
µjv

µsj)ei = D0
vs+A(v)s.

The connection D0 is called the standard flat connection.

parallel transport: Suppose (E, π,M) is a vector bundle with a connection D defined
on it. Let γ: [0, T ] −→ M be a smooth map from p to q and suppose that
for t ∈ [0, T ], u(t) is a vector in the fibre of E over γ(t). Then u(t) is parallel
transported along γ if the following condition holds:

Dγ′(t)u(t) =
d

dt
u(t) +A(γ′(t))u(t).

covariant derivative The object Dγ′(t)u(t) in the previous definitoin is called the co-
variant derivative.

curvature Given a vector bundle (E, π,M), two vector fields v and w on M and a
conneciton D, the curvature F (v, w) is defined to be the operator on sections of
E defined by

F (v, w)s = DvDws−DwDvs−D[v,w]s,

where the last term is included to correct for the fact that the covariant derivatives
may fail to commute because the vector fields v and w fail to commute, i.e. have
non-vanishing Lie bracket. The curvature is C∞-linear over v, w and s.

29Or complex-linear if E is a complex vector bundle
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flat connection A connection with curvature zero, F (v, w) = 0 for any v, w and s, is
a flat conneciton.

D Construction of G-bundles

Let {Uα} be an open cover of M , let V be a vector space and let ρ be a representation
of a group G on V . It is possible to create a fibre bundle structure (E, π,M) by ‘gluing’
together all the trivial bundles Uα × V using transition functions gαβ : Uα ∩ Uβ −→ G.
The bundle space is formed by taking the disjoint union⋃

α

Uα × V,

and identifying points (p, v) ∈ Uα × V and (p, v′) ∈ Uβ × V if

v = ρ(gαβ(p))v′, (18)

which can be written as
v = gαβv

′ (19)

as a useful shorthand. The conditions gαα on Uα and gαβgβγgγα = 1 on Uα ∩ Uβ ∩ Uγ

are required for the consistency of this operation. If we let [p, v]α denote the point of E
corresponding to (p, v) ∈ Uα × V , then the projection map is defined by π[p, v]α = p. It
can be shown that the resulting structure is a vector bundle. Such a bundle is called a
G-bundle with gauge group G and V the standard fibre.
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